HI~歡迎來(lái)到數(shù)造云打印平臺(tái)!
您的位置: 首頁(yè) > 打印知識(shí)庫(kù) > 材料資訊
球形金屬粉末是金屬3D打印的核心材料, 是3D打印產(chǎn)業(yè)鏈中最重要的環(huán)節(jié), 與3D打印技術(shù)的發(fā)展息息相關(guān)。本文對(duì)3D打印用金屬粉末的主要制備工藝的基本原理進(jìn)行了闡述, 并分析了其優(yōu)缺點(diǎn), 目的是進(jìn)一步提高3D打印用金屬粉末的制備技術(shù)水平, 促進(jìn)3D打印技術(shù)的發(fā)展和應(yīng)用。
球形金屬粉末是金屬3D打印的核心材料, 是3D打印產(chǎn)業(yè)鏈中最重要的環(huán)節(jié), 與3D打印技術(shù)的發(fā)展息息相關(guān)。在“2013世界3D打印技術(shù)產(chǎn)業(yè)大會(huì)”中, 權(quán)威專(zhuān)家對(duì)3D打印金屬粉末的性能要求給出了清晰的定義, 即尺寸小于1 mm的金屬粉末, 此外, 還要求金屬滿(mǎn)足純度高、球形度好、粒徑分布窄、含氧量低、流動(dòng)性好等要求。2014年6月頒布的ASTM F3049-14標(biāo)準(zhǔn)規(guī)定了3D打印金屬粉性能的范圍和表征方法。目前, 3D打印用金屬粉末材料主要集中在鐵、鈦、鈷、銅、鎳等金屬及其合金方面。
隨著金屬3D打印技術(shù)的飛速發(fā)展, 球形金屬粉末的市場(chǎng)將保持高增長(zhǎng)態(tài)勢(shì)。2016年3D打印金屬粉的市場(chǎng)規(guī)模約為2.5億美元, 據(jù)IDTechEx表示, 到2025年, 3D打印金屬粉末的市場(chǎng)規(guī)模將達(dá)到50億美元。但目前3D打印用球形金屬粉主要由國(guó)外廠家壟斷, 國(guó)內(nèi)生產(chǎn)的球形粉末存在性能不穩(wěn)定、成本高、收得率低等問(wèn)題。因此, 研究3D打印金屬粉末的制備尤為重要, 本文對(duì)3D打印用金屬粉末的主要制備工藝的基本原理進(jìn)行了闡述, 并分析了其優(yōu)缺點(diǎn), 目的是進(jìn)一步提高3D打印用金屬粉末的制備技術(shù)水平, 促進(jìn)3D打印技術(shù)的發(fā)展和應(yīng)用。
1 3D打印用金屬粉末制備工藝現(xiàn)狀
目前針對(duì)3D打印用金屬粉末的制備方法主要有霧化法、旋轉(zhuǎn)電極法、球化法等。
1.1 霧化法
霧化法制取的粉末已占當(dāng)今世界金屬3D打印粉末的80%以上, 其原理是以快速運(yùn)動(dòng)的流體 (霧化介質(zhì)) 沖擊或以其他方式將金屬或合金液流破碎為細(xì)小液滴, 隨之冷凝為固體粉末的粉末制取方法, 其原理結(jié)構(gòu)圖如圖1所示, 根據(jù)霧化介質(zhì)不同, 霧化法主要分為水霧化和氣霧化。
圖1 霧化制粉原理圖
1.1.1 水霧化圖2 層流霧化噴嘴結(jié)構(gòu)圖
英國(guó)PSI公司在緊密耦合霧化技術(shù)的基礎(chǔ)上對(duì)緊耦合環(huán)縫式噴嘴結(jié)構(gòu)進(jìn)行了結(jié)構(gòu)優(yōu)化和改進(jìn), 使氣流的出口速度超過(guò)聲速, 可在較小的霧化壓力下獲得高速氣流, 在2.5 MPa壓力下, 氣體速率可達(dá)到540 m/s, 此外超聲緊密耦合霧化技術(shù)可以提高粉末的冷卻速度, 效率高, 成本低, 且應(yīng)用范圍廣, 是氣霧化技術(shù)重要的發(fā)展方向之一, 且具有工業(yè)實(shí)用意義, 對(duì)于促進(jìn)3D打印用金屬粉末的工業(yè)化生產(chǎn)制備有著重要的意義。1.2 旋轉(zhuǎn)電極法
旋轉(zhuǎn)電極法是以金屬或合金為自耗電極, 其端面受電弧加熱而熔融為液體, 并在電極高速旋轉(zhuǎn)的離心力的作用下, 將液體拋出并粉碎為細(xì)小液滴, 其原理結(jié)構(gòu)如圖4所示。一般來(lái)說(shuō), 旋轉(zhuǎn)電極的冷卻速率約為103~104K/s, 電極的旋轉(zhuǎn)速度為10 000~30 000 r/min, 制備的粉體粒度隨著電極旋轉(zhuǎn)速度、電極直徑的增大而減少, 范圍通常在50~350μm之間。
圖5 氣霧化制粉工藝和旋轉(zhuǎn)電極工藝制備的球形鈦粉
圖5是采用氣霧化工藝和旋轉(zhuǎn)電極工藝制備的球形鈦粉。與氣霧化工藝相比, 旋轉(zhuǎn)電極法制備的球形粉體沒(méi)有氣霧化球形粉末中常見(jiàn)的伴生相, 且球形度和光潔較高, 粒度分布范圍較窄, 無(wú)團(tuán)聚現(xiàn)象, 流動(dòng)性好, 在金屬3D打印過(guò)程中鋪粉均勻性好, 打印產(chǎn)品致密度高、表面光潔度高。此外整個(gè)工藝過(guò)程, 一般采用惰性氣體保護(hù), 且不需要坩堝熔煉, 避免了金屬或合金與造渣和與耐火材料接觸, 減少金屬粉末污染源, 可生產(chǎn)高純度金屬粉末。
1.3 球化法圖6 氫化鈦粉經(jīng)頻等離子球化前后微觀組織
目前加拿大的泰克納 (TEKNA) 公司開(kāi)發(fā)的射頻等離子體粉體處理系統(tǒng), 在世界范圍內(nèi)處于領(lǐng)先地位, 可以實(shí)現(xiàn)Ti、Ti-6Al-4V、W、Mo、Ta、Ni等金屬及其合金粉末的生產(chǎn)。國(guó)內(nèi)北京科技大學(xué)在射頻等離子球化方面進(jìn)行了大量的研究, 可以試驗(yàn)W、Mo、Ti等金屬粉末的球化處理, 同時(shí), 北京科技大學(xué)以氫化鈦粉為原料, 將射頻等離子球化處理與“氫爆”相結(jié)合, 球化過(guò)程中實(shí)現(xiàn)脫氫, 制備超細(xì)球形鈦粉, 粒度范圍可以達(dá)到20~50μm, 圖6是氫化鈦粉末經(jīng)射頻等離子球化前后粉末形貌圖。相關(guān)推薦
全部評(píng)論 0
暫無(wú)評(píng)論